If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+15x+20=0
a = -4.9; b = 15; c = +20;
Δ = b2-4ac
Δ = 152-4·(-4.9)·20
Δ = 617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{617}}{2*-4.9}=\frac{-15-\sqrt{617}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{617}}{2*-4.9}=\frac{-15+\sqrt{617}}{-9.8} $
| -4.9x+15x+20=0 | | 12-x=4x+2 | | 7z+12=10-5 | | 2(h+8)=h-12 | | 3(g+2)=g-5 | | 9^x+1+3^2x+1=729 | | 5(p+13)=2p-4 | | 2/3x+11=1/4x-9 | | -10q=30 | | z-76=-65 | | -7w=-56 | | (9^x+1)+(3^2x+1)=729 | | q+1=12 | | s/2=-1 | | 9x2+2x-6=0 | | 2/5c-5=-10-1/5c | | y+-15=19 | | 25x2+22x-6=0 | | 3x2=9 | | k/3-12=-8 | | k/4+7=10 | | 5/8b-4=16 | | 5(x+2)/3=7x-1 | | 5(x-4)-(x-12)=8 | | 3x/X^2-4=0 | | 1/3a-5=-1 | | x+(x*25/100)=500 | | 5x+20+4x+25=180 | | 8(6x-4)=40 | | 2x+5+3x-5=90 | | z/2+8=12 | | b/3+-14=-16 |